Identification of Human T Cell Antigens for the Development of Vaccines against Mycobacterium tuberculosis

2008 
Development of a subunit vaccine for Mycobacterium tuberculosis (Mtb) depends on the identification of Ags that induce appropriate T cell responses. Using bioinformatics, we selected a panel of 94 Mtb genes based on criteria that included growth in macrophages, up- or down-regulation under hypoxic conditions, secretion, membrane association, or because they were members of the PE/PPE or EsX families. Recombinant proteins encoded by these genes were evaluated for IFN-γ recall responses using PBMCs from healthy subjects previously exposed to Mtb. From this screen, dominant human T cell Ags were identified and 49 of these proteins, formulated in CpG, were evaluated as vaccine candidates in a mouse model of tuberculosis. Eighteen of the individual Ags conferred partial protection against challenge with virulent Mtb. A combination of three of these Ags further increased protection against Mtb to levels comparable to those achieved with bacillus Calmette-Guerin vaccination. Vaccine candidates that led to reduction in lung bacterial burden following challenge-induced pluripotent CD4 and CD8 T cells, including Th1 cell responses characterized by elevated levels of Ag-specific IgG2c, IFN-γ, and TNF. Priority vaccine Ags elicited pluripotent CD4 and CD8 T responses in purified protein derivative-positive donor PBMCs. This study identified numerous novel human T cell Ags suitable to be included in subunit vaccines against tuberculosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    131
    Citations
    NaN
    KQI
    []