The Mahler measure of \begin{document}$ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $\end{document}
2020
In this paper we study the Mahler measures of reciprocal polynomials \begin{document}$ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $\end{document} for \begin{document}$ k = 16 $\end{document} , \begin{document}$ k = -104\pm60\sqrt{3} $\end{document} , \begin{document}$ 4096 $\end{document} and \begin{document}$ k = -2024\pm765\sqrt{7} $\end{document} . We prove six conjectural identities proposed by Samart in [ 16 ].
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
1
Citations
NaN
KQI