Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors

2010 
Clostridium thermocellum produces a highly efficient cellulolytic extracellular complex, termed the cellulosome, for hydrolyzing plant cell wall biomass. The composition of the cellulosome is affected by the presence of extracellular polysaccharides; however, the regulatory mechanism is unknown. Recently, we have identified in C. thermocellum a set of putative σ and anti-σ factors that include extracellular polysaccharide-sensing components [Kahel-Raifer et al. (2010) FEMS Microbiol Lett 308:84–93]. These factor-encoding genes are homologous to the Bacillus subtilis bicistronic operon sigI-rsgI, which encodes for an alternative σI factor and its cognate anti-σI regulator RsgI that is functionally regulated by an extracytoplasmic signal. In this study, the binding of C. thermocellum putative anti-σI factors to their corresponding σ factors was measured, demonstrating binding specificity and dissociation constants in the range of 0.02 to 1 μM. Quantitative real-time RT-PCR measurements revealed three- to 30-fold up-expression of the alternative σ factor genes in the presence of cellulose and xylan, thus connecting their expression to direct detection of their extracellular polysaccharide substrates. Cellulosomal genes that are putatively regulated by two of these σ factors, σI1 or σI6, were identified based on the sequence similarity of their promoters. The ability of σI1 to direct transcription from the sigI1 promoter and from the promoter of celS (encodes the family 48 cellulase) was demonstrated in vitro by runoff transcription assays. Taken together, the results reveal a regulatory mechanism in which alternative σ factors are involved in regulating the cellulosomal genes via an external carbohydrate-sensing mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    97
    Citations
    NaN
    KQI
    []