Ultrafast Singlet Energy Transfer before Fission in a Tetracene/WSe2 Type II Hybrid Heterostructure.

2021 
Hybrid heterostructures comprising organic and two-dimensional (2D) layered semiconductors hold great promise for light harvesting and optoelectronic applications. Among them, organic materials that exhibit singlet fission (SF) in which one singlet exciton generates two triplet excitons are particularly attractive and can potentially improve the performance of the device. However, SF-enhanced devices require that SF can compete with direct energy/charge transfer from the singlet exciton. Here, we performed ultrafast spectroscopic studies on a prototypical heterostructure consisting of tetracene (Tc) and monolayer WSe2. We show a type II band alignment with 16.5 ps hole transfer from photoexcited WSe2 to tetracene and a long-lived (∼565 ps) charge separation. Importantly, we show ultrafast (∼3.4 ps) singlet exciton energy transfer from photoexcited tetracene to WSe2, prior to the slow SF process (>20 ps) in tetracene. This study raises the challenge and calls for the careful design of SF-enhanced 2D optoelectronic devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    1
    Citations
    NaN
    KQI
    []