Left Ventricular Systolic Dysfunction Induced by Ventricular EctopyClinical Perspective

2011 
Background— Premature ventricular contractions (PVCs) commonly coexist with cardiomyopathy. Recently, PVCs have been identified as a possible cause of cardiomyopathy. We developed a PVC-induced cardiomyopathy animal model using a novel premature pacing algorithm to assess timeframe and reversibility of this cardiomyopathy and examine the associated histopathologic abnormalities. Methods and Results— Thirteen mongrel dogs were implanted with a specially programmed pacemaker capable of simulating ventricular extrasystoles. Animals were randomly assigned to either 12 weeks of bigeminal PVCs (n=7) or no PVCs (control, n=6). Continuous 24-hour Holter monitoring corroborated ventricular bigeminy in the PVC group (PVC, 49.8% versus control, <0.01%; P <0.0001). After 12 weeks, only the PVC group had cardiomyopathy, with a significant reduction in left ventricular ejection fraction (PVC, 39.7±5.4% versus control, 60.7±3.8%; P <0.0001) and an increase in left ventricular end-systolic dimension (PVC, 33.3±3.5 mm versus control, 23.7±3.6 mm; P <0.001). Ventricular effective refractory period showed a trend to prolong in the PVC group. PVC-induced cardiomyopathy was resolved within 2 to 4 weeks after discontinuation of PVCs. No inflammation, fibrosis, or changes in apoptosis and mitochondrial oxidative phosphorylation were observed with PVC-induced cardiomyopathy. Conclusions— This novel PVC animal model demonstrates that frequent PVCs alone can induce a reversible form of cardiomyopathy in otherwise structurally normal hearts. PVC-induced cardiomyopathy lacks gross histopathologic and mitochondrial abnormalities seen in other canine models of cardiomyopathy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    0
    Citations
    NaN
    KQI
    []