GHz Rotation of an Optically Trapped Nanoparticle in Vacuum

2018 
We report on rotating an optically trapped silica nanoparticle in vacuum by transferring spin angular momentum of light to the particle's mechanical angular momentum. At sufficiently low damping, realized at pressures below $10^{-5}$ mbar, we observe rotation frequencies of single 100 nm particles exceeding 1 GHz. We find that the steady-state rotation frequency scales linearly with the optical trapping power and inversely with pressure, consistent with theoretical considerations based on conservation of angular momentum. Rapidly changing the polarization of the trapping light allows us to extract the pressure-dependent response time of the particle's rotational degree of freedom.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    170
    Citations
    NaN
    KQI
    []