Xenopus CDC7/DRF1 Complex Is Required for the Initiation of DNA Replication
2006
Abstract The Cdc7 kinase is essential for the initiation of DNA replication in eukaryotes. Two regulatory subunits of the Xenopus Cdc7 kinase have been identified: XDbf4 and XDrf1. In this study we determined the expression pattern of XDbf4 and XDrf1 and examined their involvement in DNA replication. We show that XDrf1 expression is restricted to oogenesis and early embryos, whereas XDbf4 is expressed throughout development. Immunodepletion from Xenopus egg extracts indicated that both proteins are only found in complexes with XCdc7 and there is a 5-fold molar excess of the XCdc7/Drf1 over SCdc7/Dbf4 complexes. Both complexes exhibit kinase activity and are differentially phosphorylated during the cell cycle. Depletion of the XCdc7/Drf1 from egg extracts inhibited DNA replication, whereas depletion of XCdc7/Dbf4 had little effect. Chromatin binding studies indicated that XCdc7/Drf1 is required for pre-replication complex activation but not their assembly. XCdc7/Dbf4 complexes bound to the chromatin in two steps: the first step was independent of pre-replication complex assembly and the second step was dependent on pre-replication complex activation. By contrast, binding of XCdc7/Drf1 complexes was entirely dependent on pre-replication complex assembly. Finally, we present evidence that the association of the two complexes on the chromatin is not regulated by ATR checkpoint pathways that result from DNA replication blocks. These data suggest that Cdc7/Drf1 but not Cdc7/Dbf4 complexes support the initiation of DNA replication in Xenopus egg extracts and during early embryonic development.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
42
References
25
Citations
NaN
KQI