Bionic quadruped robot dynamic gait control strategy based on twenty degrees of freedom

2018 
Quadruped robot dynamic gaits have much more advantages than static gaits on speed and efficiency, however high speed and efficiency calls for more complex mechanical structure and complicated control algorithm. It becomes even more challenging when the robot has more degrees of freedom. As a result, most of the present researches focused on simple robot, while the researches on dynamic gaits for complex robot with more degrees of freedom are relatively limited. The paper is focusing on the dynamic gaits control for complex robot with twenty degrees of freedom for the first time. Firstly, we build a relatively complete 3D model for quadruped robot based on spring loaded inverted pendulum U+0028 SLIP U+0029 model, analyze the inverse kinematics of the model, plan the trajectory of the swing foot and analyze the hydraulic drive. Secondly, we promote the control algorithm of one-legged to the quadruped robot based on the virtual leg and plan the state variables of pace gait and bound gait. Lastly, we realize the above two kinds of dynamic gaits in ADAMS-MATLAB joint simulation platform which testify the validity of above method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    14
    Citations
    NaN
    KQI
    []