Precise mapping of new group I introns in tRNA genes

2020 
Bacterial tRNA have been found interrupted at various positions in the anticodon loop by group I introns, in four types. The primary bioinformatic tool for group I intron discovery is a covariance model that can identify conserved features in the catalytic core and can sometimes identify the typical uridine residue at the -1 position, preceding the 5-prime splice site, but cannot identify the typical guanidine residue at the omega position, preceding the 3-prime splice site, to achieve precise mapping. One approach to complete the automation of group I intron mapping is to focus instead on the exons, which is enabled by the regularity of tRNAs. We develop a software module, within a larger package (tFind) aimed at mapping bacterial tRNA and tmRNA genes precisely, that expands this list of four known classes of intron-interrupted tRNAs to 21 cases. A new covariance model for these introns is presented. The wobble base pair formed by the -1 uridine is considered a determinant of the 5-prime splice site, yet one reasonably large new type bears a cytidine nucleotide at that position.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    0
    Citations
    NaN
    KQI
    []