17β-estradiol modulates gene expression in the female mouse cerebral cortex.

2014 
17β-estradiol (E2) plays critical roles in a number of target tissues including the mammary gland, reproductive tract, bone, and brain. Although it is clear that E2 reduces inflammation and ischemia-induced damage in the cerebral cortex, the molecular mechanisms mediating the effects of E2 in this brain region are lacking. Thus, we examined the cortical transcriptome using a mouse model system. Female adult mice were ovariectomized and implanted with silastic tubing containing oil or E2. After 7 days, the cerebral cortices were dissected and RNA was isolated and analyzed using RNA-sequencing. Analysis of the transcriptomes of control and E2-treated animals revealed that E2 treatment significantly altered the transcript levels of 88 genes. These genes were associated with long term synaptic potentiation, myelination, phosphoprotein phosphatase activity, mitogen activated protein kinase, and phosphatidylinositol 3-kinase signaling. E2 also altered the expression of genes linked to lipid synthesis and metabolism, vasoconstriction and vasodilation, cell-cell communication, and histone modification. These results demonstrate the far-reaching and diverse effects of E2 in the cerebral cortex and provide valuable insight to begin to understand cortical processes that may fluctuate in a dynamic hormonal environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    107
    References
    14
    Citations
    NaN
    KQI
    []