Модель линейной регрессии с регулируемой селективностью для отбора признаков в задаче оценивания зависимостей по экспериментальным данным

2012 
A statistical approach for statement of the regression estimation problem in case of a small number of observations and a rich feature description is considered. For essential feature selection in regression estimation problem a probabilistic model is proposed, in which a structural parameter controls fundamental regressor selection. Experimental results of proposed algorithm are shown in comparison with the well-known feature selection methods (Lasso and Elastic Net).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []