Cooperative Orthogonal Macromolecular Assemblies with Broad Spectrum Antiviral Activity, High Selectivity, and Resistance Mitigation

2016 
Treatment of viral infections continues to be elusive owing to the variance in virus structure (RNA, DNA, and enveloped and nonenveloped viruses) together with their ability to rapidly mutate and garner resistance. Here we report a general strategy to prevent viral infection using multifunctional macromolecules that were designed to have mannose moieties that compete with viruses for immune cells, and basic amine groups that block viral entry through electrostatic interactions and prevent viral replication by neutralizing the endosomal pH. We showed that cells treated with the antiviral polymers inhibited TIM receptors from trafficking virus, likely from electrostatic and hydrogen-bonding interactions, with EC50 values ranging from 2.6 to 6.8 mg/L, depending on the type of TIM receptors. Molecular docking computations revealed an unexpected, and general, specific hydrogen-bonding interactions with viral surface proteins, and virus and cell binding assay demonstrated a significant reduction in infection af...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    16
    Citations
    NaN
    KQI
    []