GSNOR-mediated de-nitrosylation in the plant defence response

2011 
Abstract A key feature of the plant defence response is the transient engagement of a nitrosative burst, resulting in the synthesis of reactive nitrogen intermediates (RNIs). Specific, highly reactive cysteine (Cys) residues of low p K a are a major site of action for these intermediates. The addition of an NO moiety to a Cys thiol to form an S-nitrosothiol (SNO), is termed S-nitrosylation. This redox-based post-translational modification is emerging as a key regulator of protein function in plant immunity. Here we highlight recent advances in our understanding of de-nitrosylation, the mechanism that depletes protein SNOs, with a focus on S-nitrosoglutathione reductase (GSNOR). This enzyme controls total cellular S-nitrosylation indirectly during the defence response by turning over S-nitrosoglutathione (GSNO), a major cache of NO bioactivity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    97
    Citations
    NaN
    KQI
    []