Comparison experiments of neon and helium buffer gases cooling in trapped 199^Hg^+ ions linear trap

2014 
The influences of different buffer gas, neon and helium, on199Hg+clock transition are compared in trapped199Hg+linear trap. By the technique of time domain’s Ramsey separated oscillatory fields, the buffer gas pressure frequency shifts of199Hg+clock transition are measured to be(d f /dPNe)(1/ f) = 1.8 × 10-8Torr-1for neon and(d f /dPHe)(1/ f) = 9.1 × 10-8Torr-1for helium. Meanwhile, the line-width of199Hg+clock transition spectrum with the buffer gas neon is narrower than that with helium at the same pressure. These experimental results show that neon is a more suitable buffer gas than helium in199Hg+ions microwave frequency standards because of the199Hg+clock transition is less sensitive to neon variations and the better cooling effect of neon. The optimum operating pressure for neon is found to be about 1.0 × 10-5Torr in our linear ion trap system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []