Exploring ultra-fast charge transfer and vibronic coupling with N 1s RIXS maps of an aromatic molecule coupled to a semiconductor

2017 
We present for the first time two-dimensional resonant inelastic x-ray scattering (RIXS) maps of multilayer and monolayer bi-isonicotinic acid adsorbed on the rutile TiO2(110) single crystal surface. This enables the elastic channel to be followed over the lowest unoccupied molecular orbitals resonantly excited at the N 1s absorption edge. The data also reveal ultra-fast intramolecular vibronic coupling, particularly during excitation into the lowest unoccupied molecular orbital-derived resonance. Both elastic scattering and the vibronic coupling loss features are expected to contain the channel in which the originally excited electron is directly involved in the core-hole decay process. This allows RIXS data for a molecule coupled to a wide bandgap semiconductor to be considered in the same way as the core-hole clock implementation of resonant photoemission spectroscopy (RPES). However, contrary to RPES measurements, we find no evidence for the depletion of the participator channel under the conditions o...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    4
    Citations
    NaN
    KQI
    []