Collective And Single-particle Structures In The Neutron-rich Doubly Mid-shell Nucleus 170Dy

2017 
One of the most successful descriptions of the structure of atomic nuclei is the spherical shell model. It, however, becomes impractical when moving away from closed-shell nuclei. Instead, it is the interplay between the macroscopic shape degrees of freedom and the microscopic nature of the underlying single-particle structure in a deformed basis that determines the nuclear structure. Being the heaviest nucleus precisely in the middle of, known, closed proton and neutron shells, 170Dy has become a central calibration point for tests of collective models of nuclear physics. However, besides one candidate transition from a previous experiment in Legnaro, Italy, no experimental information is available for this nucleus. Using the EURICA setup at RIKEN, which couples the worlds highest intensity in-flight fission facility with a high-efficiency HPGe array, an experiment in November 2014 produced 170Dy nuclei by in-flight fission of a 238U beam. The results from this experiment provide a wealth of information on this elusive nucleus, including the evolution of quadrupole collectivity, rigidity and higher order deformations, as well as the long sought for isomeric K = 6+ state, predicted to be exceptionally pure at mid-shell. These results provide us with a rich level scheme for discussing both single-particle and collective structures at mid-shell.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []