Lysophosphatidic acid receptor 1 inhibitor, AM095, attenuates diabetic nephropathy in mice by downregulation of TLR4/NF-κB signaling and NADPH oxidase
2019
Abstract Diabetic nephropathy (DN) is one of the major long-term complications of diabetes. Lysophosphatidic acid (LPA) signaling has been implicated in renal fibrosis. In our previous study, we found that the LPA receptor 1/3 (LPAR1/3) antagonist, ki16425, protected against DN in diabetic db/db mice. Here, we investigated the effects of a specific pharmacological inhibitor of LPA receptor 1 (LPA1), AM095, on DN in streptozotocin (STZ)-induced diabetic mice to exclude a possible contribution of LPAR3 inhibition. AM095 treatment significantly reduced albuminuria and the albumin to creatinine ratio and significantly decreased the glomerular volume and tuft area in the treated group compared with the STZ-vehicle group. In the kidney of STZ-induced diabetic mice, the expression of LPAR1 mRNA and protein was positively correlated with oxidative stress. AM095 treatment inhibited LPA-induced reactive oxygen species production and NADPH oxidase expression as well as LPA-induced toll like receptor 4 (TLR4) expression in mesangial cells and in the kidney of STZ-induced diabetic mice. In addition, AM095 treatment suppressed LPA-induced pro-inflammatory cytokines and fibrotic factors expression through downregulation of phosphorylated NFκBp65 and c-Jun N-terminal kinases (JNK) in vitro and in the kidney of STZ-induced diabetic mice. Pharmacological or siRNA inhibition of TLR4 and NADPH oxidase mimicked the effects of AM095 in vitro. In conclusion, AM095 is effective in preventing the pathogenesis of DN by inhibiting TLR4/NF-κB and the NADPH oxidase system, consequently inhibiting the inflammatory signaling cascade in renal tissue of diabetic mice, suggesting that LPAR1 antagonism might provide a potential therapeutic target for DN.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
43
References
13
Citations
NaN
KQI