Epidermal growth factor receptor cross-talks with ligand-occupied estrogen receptor-α to modulate both lactotroph proliferation and prolactin gene expression

2009 
Both estrogen (E2) and EGF regulate lactotrophs, and we recently demonstrated that EGF phosphorylates S118 on estrogen receptor-α (ERα) and requires ERα to stimulate prolactin (PRL) release. However, the interactions between ligand-occupied ERα and activated ErbB1 and its impact on lactotroph function are unknown. Using rat GH3 lactotrophs, we found that both E2 and EGF independently stimulated proliferation and PRL gene expression. Furthermore, their combination resulted in an enhanced stimulatory effect on both cell proliferation and PRL gene expression. Inhibitors of ER as well as ErbB1 blocked the combined effects of E2 and EGF. Pretreatment with UO126 abolished the combined effects, demonstrating Erk1/2 requirement. Although bidirectionality in ER-ErbB1 cross-talk is a well-accepted paradigm, interestingly in lactotrophs, ErbB1 kinase inhibitor failed to block the effect of E2 on proliferation and stimulation of PRL gene expression, suggesting that ER does not require ErbB1 to mediate its effects. Furthermore, E2 did not affect the ability of EGF to induce c-Fos expression or modulate AP-1 activity. However, both E2 and EGF combine to enhance S118 phosphorylation of ERα, leading to enhanced E2-mediated estrogen response element transactivation. Taken together, our results suggest that, in lactotrophs, activated ErbB1 phosphorylates ERα to enhance the stimulatory effect of E2, thereby providing the molecular basis by which EGF amplifies the response of E2.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    19
    Citations
    NaN
    KQI
    []