Pattern-Based Analysis of Time Series: Estimation

2020 
While Internet of Things (IoT) devices and sensors create continuous streams of information, Big Data infrastructures are deemed to handle the influx of data in real-time. One type of such a continuous stream of information is time series data. Due to the richness of information in time series and inadequacy of summary statistics to encapsulate structures and patterns in such data, development of new approaches to learn time series is of interest. In this paper, we propose a novel method, called pattern tree, to learn patterns in the times-series using a binary-structured tree. While a pattern tree can be used for many purposes such as lossless compression, prediction and anomaly detection, in this paper we focus on its application in time series estimation and forecasting. In comparison to other methods, our proposed pattern tree method improves the mean squared error of estimation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []