Muscle Path Wrapping on Arbitrary Surfaces

2020 
OBJECTIVE Musculoskeletal models play an important role in surgical planning and clinical assessment of gait and movement. Faster and more accurate simulation of muscle paths in such models can result in better predictions of forces and facilitate real-time clinical applications, such as rehabilitation with real-time feedback. We propose a novel and efficient method for computing wrapping paths across arbitrary surfaces, such as those defined by bone geometry. METHODS A muscle path is modeled as a massless, frictionless elastic strand that uses artificial forces, applied independently of the dynamic simulation, to wrap tightly around intervening obstacles. Contact with arbitrary surfaces is computed quickly using a distance grid, which is interpolated quadratically to provide smoother results. RESULTS Evaluation of the method demonstrates good accuracy, with mean relative errors of 0.002 or better when compared against simple cases with exact solutions. The method is also fast, with strand update times of around 0.5 msec for a variety of bone shaped obstacles. CONCLUSION Our method has been implemented in the open source simulation system ArtiSynth (www.artisynth.org) and helps solve the problem of muscle wrapping around bones and other structures. SIGNIFICANCE Muscle wrapping on arbitrary surfaces opens up new possibilities for patient-specific musculoskeletal models where muscle paths can directly conform to shapes extracted from medical image data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    1
    Citations
    NaN
    KQI
    []