Dark current transport mechanisms in narrow-gap heterojunctions for IR arrays

2001 
Dark carrier transport mechanisms in narrow-gap Hg 1-x Cd x Te multilayer structures and Pb 1-z Sn z Te/PbTe 1-y S(Se) y heterojunctions at T~80 K for applications in IR arrays are analyzed and compared with homojunction mercury-cadmium telluride (MCT) photodiode characteristics in the temperature range T~70-150 K. In the analysis procedure two major current mechanisms were included into the current balance equations: trap-assisted tunneling (TAT) and Shockley-Reed-Hall (SRH) generation-recombination processes for a defect trap level. Other current mechanisms (e.g., band-to-band tunneling, bulk diffusion) were taken into account as additive contributions. For TAT the tunneling rate characteristics were calculated within the k-p-approximation. Using donor and acceptor concentrations, trap level energies and concentrations, and in-junction trap level lifetimes as fitting parameters, good agreement with experimental data for HgCdTe and PbSnTe heterojunction and homojunction diodes was obtained, which allows one to predict the diode parameters from the known material characteristics. Photodiode or array parameters itself, or with CCD readouts, or CCD readouts separately were tested to study the influence of readout cascade on the diodes' properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    4
    Citations
    NaN
    KQI
    []