Regularized Boltzmann-Gibbs statistics for a non-confining field

2020 
We consider an overdamped Brownian particle subject to an asymptotically flat potential with a trap of depth $U_0$ around the origin. When the temperature is small compared to the trap depth ($\xi=k_B T/U_0 \ll 1$), there exists a range of timescales over which physical observables remain practically constant. This range can be very long, of the order of the Arrhenius factor ${\rm e}^{1/\xi}$. For these quasi-equilibrium states, the usual Boltzmann-Gibbs recipe does not work, since the partition function is divergent due to the flatness of the potential at long distances. However, we show that the standard Boltzmann-Gibbs (BG) statistical framework and thermodynamic relations can still be applied through proper regularization. This can be a valuable tool for the analysis of quasi-equilibrium in the non-confining potential fields that characterize a vast number of systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    0
    Citations
    NaN
    KQI
    []