Generic nature of long-range repulsion mechanism on a bulk insulator?

2017 
Dynamic atomic force microscopy measurements are reported that provide evidence for the presence of long-range repulsion in molecular self-assembly on a bulk insulator surface. We present the structures formed from four different benzoic acid derivatives on the (10.4) cleavage plane of calcite kept in ultra-high vacuum. These molecules have in common that they self-assemble into molecular stripes when deposited onto the surface held at room temperature. For all molecules tested, a detailed analysis of the stripe-to-stripe distance distribution reveals a clear deviation from what would be expected for randomly placed, non-interacting stripes (i.e., geometric distribution). When excluding kinetic effects during growth, this result gives evidence for a long-range repulsion mechanism acting during the assembly of these stripes. The fact that this finding is robust against changes in the molecular structure indicates a generic nature of the observed mechanism, implying a ubiquitous origin such as electrostatic repulsion. Finally, we discuss parameters that might affect the unambiguous observation of this generic repulsion under specific experimental conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    2
    Citations
    NaN
    KQI
    []