Anomalous Knight shift and low-energy spin dynamics in the nematic state of FeSe$_{\rm 1-x}$S$_{\rm x}$.

2019 
The interplay between the nematic order and magnetism in FeSe is not yet well understood. There is a controversy concerning the relationship between orbital and spin degrees of freedom in FeSe and their relevance for superconductivity. Here we investigate the effect of S substitution on the nematic transition temperature ($T_{\rm n}$) and the low-energy spin fluctuations (SF) in FeSe single crystals. We show that the low-energy SF emerge below the nematic transition. The difference between the onset temperature for the critical SF ($T_{\rm SF}$) and $T_{\rm n}$ is small for FeSe but significantly increases with S substitution. Below $T_{\rm SF}$ the Korringa relation is violated and the effective muon hyperfine coupling constant changes a sign. Our results exclude a direct coupling of the low-energy SF to the electronic nematic order indicating a presence of multiple spin degrees of freedom in FeSe$_{\rm 1-x}$S$_{\rm x}$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []