Excitatory synaptic transmission in the spinal substantia gelatinosa is under an inhibitory tone of endogenous adenosine

2010 
Abstract Exogenous adenosine produces potent synaptic inhibition in spinal substantia gelatinosa (SG), a region involved in nociceptive and thermoreceptive mechanisms. To examine the possibility that endogenous adenosine tonically modulates excitatory synaptic transmission in spinal SG, whole-cell, voltage-clamp recordings were made from SG neurons in adult rat spinal cord slices. In all SG neurons sensitive to exogenous adenosine, the adenosine uptake inhibitor, NBTI, mimics adenosine's inhibitory actions on dorsal root evoked EPSCs (eEPSCs) and miniature spontaneous EPSCs (mEPSCs). These inhibitory effects were antagonized by A1 adenosine receptor antagonist, DPCPX. DPCPX also potentates eEPSCs in those SG neurons in which adenosine or adenosine A1 receptor agonists (CHA, CCPA) suppressed eEPSCs. DPCPX often increases mEPSC frequency without altering mEPSC amplitude, suggesting presynaptic action on adenosine A1 receptors. Selective A2 (DMPX) and A2a (ZM 241385) adenosine receptor antagonists had no or minimal effects upon either eEPSCs or mEPSCs. The adenosine degrading enzyme, adenosine deaminase, mimicked the effects of DPCPX on the mEPSC frequency. We conclude that the excitatory synaptic transmission in the spinal SG is under an inhibitory tone of endogenous adenosine through the activation of A1 receptors. The present results suggested that the background activity of A1 receptors in the spinal SG might be contributed to setting the physiological “noceceptive thresholds”.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    14
    Citations
    NaN
    KQI
    []