Structural and Functional Responses of Soil Microbial Communities to Biodegradable Plastic Film Mulching in Two Agroecosystems

2019 
Polyethylene (PE) plastic mulch films are used globally in crop production but incur considerable disposal and environmental pollution issues. Biodegradable plastic mulch films (BDMs), an alternative to PE-based films, are designed to be tilled into the soil where they are expected to be mineralized to carbon dioxide, water and microbial biomass. However inadequate research regarding the impacts of repeated incorporation of BDMs on soil microbial communities has partly contributed to limited adoption of BDMs. In this study, we evaluated the effects of BDM incorporation on soil microbial community structure and function over two years in two geographical locations: Knoxville, TN, and in Mount Vernon, WA. Treatments included four plastic BDMs, a completely biodegradable cellulose mulch, a non-biodegradable PE mulch and a no mulch plot. Bacterial community structure determined using 16S rRNA amplicon sequencing revealed significant differences by location and season. Differences in bacterial communities by mulch treatment were not significant for any season in either location, except for Fall 2015 in WA where differences were observed between BDMs and no-mulch plots. Extracellular enzyme rate assays were used to characterize communities functionally, revealing significant differences by location and sampling season in both TN and WA but minimal differences between BDMs and PE treatments. Limited effects of BDM incorporation on soil bacterial community structure and soil enzyme activities when compared to PE suggest that BDMs have comparable influences on soil microbial communities, and therefore could be considered an alternative to PE.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    2
    Citations
    NaN
    KQI
    []