Interface micromotions increase with less-conforming cementless glenoid components

2012 
Background The optimal degree of conformity between the glenoid and humeral components in total shoulder arthroplasty for best performance and durability is still a matter of debate. The main aim of this study is to evaluate the influence of joint conformity on the bone-implant interface micromotions in a cementless glenoid implant. Materials and methods Polyethylene inlays with different degrees of conformity (radial mismatch of 0, 2, 4, and 6 mm) were mounted on a cementless metal back and then implanted in a bone substitute. These glenoid components were loaded by a prosthetic humeral head during a force-controlled experiment. Normal-to-interface micromotions and bone substitute deformations were measured at different points of the interface. Rim displacement and humeral head translation were also measured. A finite element (FE) model of the experiments was implemented to estimate the normal- and tangent-to-interface micromotions in the entire bone-implant interface. Results All measured variables increased with less-conforming PE inlays. Normal-to-interface micromotions were significantly larger ( P Discussion In a force-controlled experiment with a cementless glenoid component, a non-conforming PE inlay allows larger interface micromotions than a conforming inlay, reaching a magnitude that may hamper local bone ingrowth in this type of component. This is mainly because of the larger humeral head translation that boosts the effects of the so-called rocking-horse phenomenon.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    26
    Citations
    NaN
    KQI
    []