MicroRNA-410 functions as a tumor suppressor by targeting angiotensin II type 1 receptor in pancreatic cancer.

2015 
MicroRNAs (miRNAs) act as key regulators of gene expression in diverse biological processes and are intimately involved in tumorigenesis. However, the underlying molecular mechanisms of miR-410 in pancreatic cancer remain poorly understood. In this study, we found that miR-410 overexpression suppressed pancreatic cancer cell growth in vitro and in vivo as well as cell invasion and migration. miR-410 also resulted in G1/S cell-cycle arrest. We then showed that angiotensin II type 1 receptor (AGTR1) was a direct target of miR-410, with miR-410 suppressing AGTR1 expression levels. In contrast, inhibition of miR-410 increased the expression of AGTR1. Silencing of AGTR1 inhibited cell growth and invasion, similar to miR-410 overexpression. In addition, we found that the induction of vascular endothelial growth factor and the activation of the ERK signaling pathway by angiotensin II were blocked by miR-410, similar to the angiotensin II inhibitor losartan. miR-410 overexpression inhibited angiogenesis in mice through the repression of CD31 expression. ERK pathway knockdown suppressed pancreatic cancer cell proliferation, invasion, and angiogenesis. Finally, we found that miR-410 was downregulated in pancreatic cancer tissues compared to adjacent nontumor tissues, whereas AGTR1 was upregulated in pancreatic cancer tissues. Pearson correlation analysis showed that miR-410 and AGTR1 were inversely expressed. In conclusion, our data indicate that miR-410 suppresses pancreatic cancer growth, cell invasion, migration, and angiogenesis via the downregulation of AGTR1, acting as a tumor-suppressive miRNA. In addition, our results suggest that miR-410 is a potential diagnostic biomarker and therapeutic target for patients with pancreatic cancer. © 2015 IUBMB Life, 67(1):42–53, 2015
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    47
    Citations
    NaN
    KQI
    []