Escape quartered theorem and the connectivity of the Julia sets of a family of rational maps

2019 
In this paper, we investigate the dynamics of the following family of rational maps \begin{document}$ \begin{equation*} f_{\lambda}(z) = \frac{z^{2n} - \lambda^{3n+1}}{z^n(z^{2n} - \lambda^{n - 1})} \end{equation*} $\end{document} with one parameter \begin{document}$ \lambda \in \mathbb{C}^* - \{\lambda: \lambda^{2n + 2} = 1\} $\end{document} , where \begin{document}$ n\geq 2 $\end{document} . This family of rational maps is viewed as a singular perturbation of the bi-critical map \begin{document}$ P_{-n}(z) = z^{-n} $\end{document} if \begin{document}$ \lambda \neq 0 $\end{document} is small. It is proved that the Julia set \begin{document}$ J(f_\lambda) $\end{document} is either a quasicircle, a Cantor set of circles, a Sierpinski carpet or a degenerate Sierpinski carpet provided the free critical orbits of \begin{document}$ f_\lambda $\end{document} are attracted by the super-attracting cycle \begin{document}$ 0\leftrightarrow\infty $\end{document} . Furthermore, we prove that there exists suitable \begin{document}$ \lambda $\end{document} such that \begin{document}$ J(f_\lambda) $\end{document} is a Cantor set of circles but the dynamics of \begin{document}$ f_{\lambda} $\end{document} on \begin{document}$ J(f_{\lambda}) $\end{document} is not topologically conjugate to that of any known rational maps with only one or two free critical orbits (including McMullen maps and the generalized McMullen maps). The connectivity of \begin{document}$ J(f_{\lambda}) $\end{document} is also proved if the free critical orbits are not attracted by the cycle \begin{document}$ 0\leftrightarrow\infty $\end{document} . Finally we give an estimate of the Hausdorff dimension of the Julia set of \begin{document}$ f_\lambda $\end{document} in some special cases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    3
    Citations
    NaN
    KQI
    []