Fluorescent quantification of terazosin hydrochloride content in human plasma and tablets using second-order calibration based on both parallel factor analysis and alternating penalty trilinear decomposition.

2010 
Two second-order calibration methods based on the parallel factor analysis (PARAFAC) and the alternating penalty trilinear decomposition (APTLD) method, have been utilized for the direct determination of terazosin hydrochloride (THD) in human plasma samples, coupled with the excitation-emission matrix fluorescence spectroscopy. Meanwhile, the two algorithms combing with the standard addition procedures have been applied for the determination of terazosin hydrochloride in tablets and the results were validated by the high-performance liquid chromatography with fluorescence detection. These second-order calibrations all adequately exploited the second-order advantages. For human plasma samples, the average recoveries by the PARAFAC and APTLD algorithms with the factor number of 2 (N = 2) were 100.4 ± 2.7% and 99.2 ± 2.4%, respectively. The accuracy of two algorithms was also evaluated through elliptical joint confidence region (EJCR) tests and t-test. It was found that both algorithms could give accurate results, and only the performance of APTLD was slightly better than that of PARAFAC. Figures of merit, such as sensitivity (SEN), selectivity (SEL) and limit of detection (LOD) were also calculated to compare the performances of the two strategies. For tablets, the average concentrations of THD in tablet were 63.5 and 63.2 ng mL–1 by using the PARAFAC and APTLD algorithms, respectively. The accuracy was evaluated by t-test and both algorithms could give accurate results, too.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    1
    Citations
    NaN
    KQI
    []