Synthesis of Au–Cu Alloy Nanoparticles as Peroxidase Mimetics for H2O2 and Glucose Colorimetric Detection

2021 
The detection of hydrogen peroxide (H2O2) is essential in many research fields, including medical diagnosis, food safety, and environmental monitoring. In this context, Au-based bimetallic alloy nanomaterials have attracted increasing attention as an alternative to enzymes due to their superior catalytic activity. In this study, we report a coreduction synthesis of gold–copper (Au–Cu) alloy nanoparticles in aqueous phase. By controlling the amount of Au and Cu precursors, the Au/Cu molar ratio of the nanoparticles can be tuned from 1/0.1 to 1/2. The synthesized Au–Cu alloy nanoparticles show good peroxidase-like catalytic activity and high selectivity for the H2O2-mediated oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB, colorless) to TMB oxide (blue). The Au–Cu nanoparticles with an Au/Cu molar ratio of 1/2 exhibit high catalytic activity in the H2O2 colorimetric detection, with a limit of detection of 0.141 μM in the linear range of 1–10 μM and a correlation coefficient R2 = 0.991. Furthermore, the Au–Cu alloy nanoparticles can also efficiently detect glucose in the presence of glucose oxidase (GOx), and the detection limit is as low as 0.26 μM.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    2
    Citations
    NaN
    KQI
    []