The Rate of Asymptotic Normality of Frequency Polygon Density Estimation for Spatial Random Fields

2018 
This paper is to investigate the convergence rate of asymptotic normality of frequency polygon estimation for density function under mixing random fields, which include strongly mixing condition and some weaker mixing conditions. A Berry-Esseen bound of frequency polygon is established and the convergence rates of asymptotic normality are derived. In particularly, for the optimal bin width , it is showed that the convergence rate of asymptotic normality reaches to  when mixing coefficient tends to zero exponentially fast.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []