Study of the structure and dynamics of poly(vinyl pyrrolidone) by molecular dynamics simulations validated by quasielastic neutron scattering and x-ray diffraction experiments
2011
Quasielastic neutron scattering, x-ray diffraction measurements, and fully atomistic molecular dynamics simulations have been performed on poly(vinylpyrrolidone) homopolymer above its glass transition temperature. A “prepeak” appears in the x-ray diffraction pattern that shows the typical features of a first amorphous halo. From an effective description of the experimentally accessed incoherent scattering function of hydrogens in terms of a stretched exponential function, we observe enhanced stretching and a momentum-transfer dependence of the characteristic time different from that usually reported for more simple polymers (main-chain polymers or polymers with small side groups). The comparison with both kinds of experimental results has validated the simulations. The analysis of the simulated structure factor points to a nanosegregation of side groups (SG) and main-chains (MC). The detailed insight provided by the simulations on the atomic trajectories reveals a partial and spatially localized decouplin...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
66
References
22
Citations
NaN
KQI