Polydimethylsiloxane-Based Self -Healing Composite and Coating Materials

2006 
Abstract : This thesis describes the science and technology of a new class of autonomic polymeric materials which mimic some of the functionalities of biological materials. Specifically, we demonstrate an autonomic self-healing polymer system which can heal damage in both coatings and bulk materials. The new self-healing system we developed greatly extends the capability of self-healing polymers by introducing tin catalyzed polycondensation of hydroxyl end-functionalized polydimethylsiloxane and polydiethoxysiloxane based chemistries. The components in this system are widely available and comparatively low in cost, and the healing chemistry also remains stable in humid or wet environments. These achievements significantly increase the probability that self-healing could be extended not only to polymer composites but also to coatings and thin films in harsh environments. We demonstrate the bulk self-healing property of a polymer composite composed of a phase-separated PDMS healing agent and a microencapsulated organotin catalyst by chemical and mechanical testing. Another significant research focus is on self-healing polymer coatings which prevent corrosion of a metal substrate after deep scratch damage. The anti-corrosion properties of the self-healing polymer on metal substrates are investigated by corrosion resistance and electrochemical tests. Even after scratch damage into the substrate, the coating is able to heal, while control samples which do not include all the necessary healing components reveal rapid corrosion propagation. This self-healing coating solution can be easily applied to most substrate materials, and is compatible with most common polymer matrices. Self-healing has the potential to extend the lifetime and increase the reliability of thermosetting polymers used in a wide variety of applications ranging from microelectronics to aerospace.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    4
    Citations
    NaN
    KQI
    []