The devil is in the details: identifying aspects of temperature variation that underlie sex determination in species with TSD

2019 
: Most organisms experience thermal variability in their environment; however, our understanding of how organisms cope with this variation is under-developed. For example, in organisms with temperature-dependent sex determination (TSD), an inability to predict sex ratios under fluctuating incubation temperatures in the field hinders predictions of how species with TSD will fare in a changing climate. To better understand how sex determination is affected by thermal variation, we incubated Trachemys scripta eggs using a "heat wave" design, where embryos experienced a male-producing temperature of 25 ± 3°C for the majority of development and varying durations at a female-producing temperature of 29.5 ± 3°C during the window of development when sex is determined. We compared the sex ratios from these incubation conditions with a previous data set that utilized a similar heat wave design, but instead incubated eggs at a male-producing temperature of 27 ± 3°C but utilized the same female-producing temperature of 29.5 ± 3°C. We compared the sex ratio reaction norms produced from these two incubation conditions and found that, despite differences in average temperatures, both conditions produced 50:50 sex ratios after ∼8 days of exposure to female-producing conditions. This emphasizes that sex can be determined in just a few days at female-producing conditions and that sex determination is relatively unaffected by temperatures outside of this short window. Further, these data demonstrate the reduced accuracy of the constant temperature equivalent model (the leading method of predicting sex ratios) under thermally variable temperatures. Conceptualizing sex determination as the number of days spent incubating at female-producing conditions rather than an aggregate statistic is supported by the mechanistic underpinnings of TSD, helps to improve sex ratio estimation methods, and has important consequences for predicting how species with TSD will fare in a changing climate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    5
    Citations
    NaN
    KQI
    []