Mechanics of random discontinuous long-fiber thermoplastics. Part II: Direct simulation of uniaxial compression

2013 
The mechanical interactions between fibers in a dense random-fiber network transmit stress, cause fiber curvature, and influence fiber orientation in the processing of many types of composites. A few theories describe the mechanics of fiber networks, but almost no simulation results are available. Here, we report a direct numerical simulation of the mechanical behavior of random-fiber networks. The finite element method is used, and each fiber is represented by a small number of 3D beam elements. The calculations assume a periodic structure to avoid boundary effects, but within the unit cell, the fibers are placed randomly. A special algorithm that uses the random sequential adsorption process creates an initial structure of straight, random, nonintersecting fibers from which a unit cell with periodic boundary conditions is built automatically [A. I. Abd El-Rahman and C. L. Tucker III, “Mechanics of random discontinuous long-fiber thermoplastics. Part I: Generation and characterization of initial geometry...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    13
    Citations
    NaN
    KQI
    []