Growth and Strain Engineering of Trigonal Te for Topological Quantum Phases in Non-Symmorphic Chiral Crystals

2019 
Strained trigonal Te has been predicted to host Weyl nodes supported by a non-symmorphic chiral symmetry. Using low-pressure physical vapor deposition, we systematically explored the growth of trigonal Te nanowires with naturally occurring strain caused by curvature of the wires. Raman spectra and high mobility electronic transport attest to the highly crystalline nature of the wires. Comparison of Raman spectra for both straight and curved nanowires indicates a breathing mode that is significantly broader and shifted in frequency for the curved wires. Strain induced by curvature during growth therefore may provide a simple pathway to investigate topological phases in trigonal Te.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    0
    Citations
    NaN
    KQI
    []