Off-axis three-mirror freeform telescope with a large linear field of view based on an integration mirror.

2016 
We report on the design of an off-axis three-mirror freeform telescope with a large field of view (FOV) based on an integration mirror (IM). This design is the continuation of the authors’ previous work. Based on aberration theory, we established a suitable nonrelayed three-mirror-anastigmat initial configuration for integration mirror design. For an optical freeform surface, we analyzed the qualitative aberration correction ability of a x-y polynomial surface that can provide a simple, convenient, and user-friendly relationship between freeform surface term coefficients and aberrations and then applied the x-y polynomial surface on the tertiary mirror to improve the system optimization degrees of freedom. In an example with a focal length of 1200 mm, an F-number of 12, and a FOV of 1°×30°, the tolerance performance was analyzed, and the system presented a good imaging performance. In addition, the IM structure and opto-mechanics support structure were designed and analyzed. The confirmatory design results showed that the integration of the primary mirror and tertiary mirror can improve opto-mechanical properties judged by multiple criteria. In conclusion, the integration of the primary mirror and tertiary mirror not only offers alignment convenience as described previously but also improves system opto-mechanical properties in multiple perspectives. We believe this large linear FOV system based on IM has broad future applications in the optical remote sensing field.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    34
    Citations
    NaN
    KQI
    []