The Modified Lateral Approach: Experience of a Single Center using an Alternative Technique to Conventional Transpedicular Percutaneous Vertebroplasty

2019 
Objective: The objective of this study was to assess whether the placement of a needle more lateral to the pedicle while using a transpedicular approach compared to the conventional technique yields comparable or better vertebral body filling. Methods: Retrospective review of 134 thoracic and lumbar unipedicular vertebroplasties performed by a single radiologist (110 lateral and 24 classic). Vertebral bodies were divided into eight voxels on computed tomography and the percent of coverage was documented. 50% and 75% cement filling thresholds were defined as “efficient.” Complications were retrospectively collected. Chi-square (χ2) was used to compare the filling efficacy and rates of extravertebral cement leakage between the approaches. Bivariate analysis was performed to assess variables potentially influencing the efficacy. Results: There was no significant difference between the two approaches for 50% coverage (classic; n = 21 [87.5%] vs. lateral; n = 98 [89.1%], P = 0.8228). There was more efficient coverage >75% using the lateral approach (classic; n = 4 [16.7%] vs. lateral; n = 46 (41.8%), P = 0.0210). Vertebral body level (50.8% thoracic vs. 26.0% lumbar, P = 0.0031) and fracture type (45.6% pathological vs. 29.2% osteoporotic, P = 0.0444) were associated with 75% coverage. Three classic cases (12.5%) had extravertebral cement leakage versus 34 lateral cases (30.9%), which was not statistically significant (P = 0.0676). Other complications included one asymptomatic lung embolization using both approaches, one pedicular fracture using the classic approach, and one overnight admission for analgesia using the lateral approach. Conclusion: A modified lateral approach proved to be as safe and more effective in achieving 75% or more vertebral filling in treating compression fractures compared to the conventional approach.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []