Study on the Polishing Characteristics of the Rotating Cylinder-Based Magnetic Gel Abrasive Finishing

2021 
Magnetic gel abrasive finishing is a high-precision polishing method that uses magnetic forces to attract and restrain a gel abrasive, composed of aqueous slime gel, steel grits, and silicon carbon (SiC), for polishing workpieces. However, the magnetic adsorption performance of the gel abrasive will drop quickly when polishing non-ferromagnetic material such as stainless-steel or brass. Moreover, centrifugal force will push out the gel abrasive from the machining surface reducing the stability of polishing. Therefore, this paper developed a rotating cylinder-based magnetic finishing setup to allow the gel abrasive and workpieces to tumble and rotate together during the polishing process. To make the gel abrasive produce irregular and complicated movement paths for improving the polishing performance, this study first analyzed and compared the average surface roughness and removed material weight of workpieces using three kinds of motor operating modes; a unidirectional trapezoidal wave mode, a bidirectional sine wave mode, and a bidirectional trapezoidal wave mode. After identifying the best motor operating mode, the study further compared the polishing characteristics using several SiC particle and steel grit sizes. The experimental results showed that the rotating cylinder driven using a bidirectional trapezoidal wave could obtain better results for average surface roughness and removed material weight than the other two operating modes, while use of the larger steel grit size also obtained improved results. However, different silicon carbide particle sizes did not have a significant impact on the polishing characteristics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []