Production of very-high-nstrontium Rydberg atoms

2013 
The production of very-high-$n$, $n\sim300$-500, strontium Rydberg atoms is explored using a crossed laser-atom beam geometry. $n$$^{1}$S$_{0}$ and $n$$^{1}$D$_{2}$ states are created by two-photon excitation via the 5s5p $^{1}$P$_{1}$ intermediate state using radiation with wavelengths of $\sim$~461 and $\sim$ 413 nm. Rydberg atom densities as high as $\sim 3 \times 10^{5}$ cm$^{-3}$ have been achieved, sufficient that Rydberg-Rydberg interactions can become important. The isotope shifts in the Rydberg series limits are determined by tuning the 461 nm light to preferentially excite the different strontium isotopes. Photoexcitation in the presence of an applied electric field is examined. The initially quadratic Stark shift of the $n$$^{1}$P$_{1}$ and $n$$^{1}$D$_{2}$ states becomes near-linear at higher fields and the possible use of $n{}^{1}$D$_{2}$ states to create strongly-polarized, quasi-one-dimensional electronic states in strontium is discussed. The data are analyzed with the aid of a two-active-electron (TAE) approximation. The two-electron Hamiltonian, within which the Sr$^{2+}$ core is represented by a semi-empirical potential, is numerically diagonalized allowing calculation of the energies of high-$n$ Rydberg states and their photoexcitation probabilities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    28
    Citations
    NaN
    KQI
    []