Spin-rotation coupling observed in neutron interferometry

2020 
Einstein’s theory of general relativity and quantum theory form the two major pillars of modern physics. However, certain inertial properties of a particle’s intrinsic spin are inconspicuous while the inertial properties of mass are well known. Here, by performing a neutron interferometric experiment, we observe phase shifts arising as a consequence of the spin’s coupling with the angular velocity of a rotating magnetic field. This coupling is a purely quantum mechanical extension of the Sagnac effect. The resulting phase shifts linearly depend on the frequency of the rotation of the magnetic field. Our results agree with the predictions derived from the Pauli–Schrodinger equation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    1
    Citations
    NaN
    KQI
    []