Model-based approach for quantitative estimates of skin, heart, and lung toxicity risk for left-side photon and proton irradiation after breast-conserving surgery

2017 
AbstractBackground: Proton beam therapy represents a promising modality for left-side breast cancer (BC) treatment, but concerns have been raised about skin toxicity and poor cosmesis. The aim of this study is to apply skin normal tissue complication probability (NTCP) model for intensity modulated proton therapy (IMPT) optimization in left-side BC.Material and methods: Ten left-side BC patients undergoing photon irradiation after breast-conserving surgery were randomly selected from our clinical database. Intensity modulated photon (IMRT) and IMPT plans were calculated with iso-tumor-coverage criteria and according to RTOG 1005 guidelines. Proton plans were computed with and without skin optimization. Published NTCP models were employed to estimate the risk of different toxicity endpoints for skin, lung, heart and its substructures.Results: Acute skin NTCP evaluation suggests a lower toxicity level with IMPT compared to IMRT when the skin is included in proton optimization strategy (0.1% versus 1.7%, p <...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    28
    Citations
    NaN
    KQI
    []