Development of a photoreactive parathyroid hormone antagonist to probe antagonist–receptor bimolecular interaction

1999 
: Parathyroid hormone (PTH) and PTH-related protein (PTHrP) exert their calciotropic activities by binding to a specific seven-transmembrane-helix-containing G protein-coupled receptor mainly located in bone and kidney cells. In order to map in detail the nature of hormone–receptor interaction, we are employing ‘photoaffinity scanning’ of the bimolecular interface. To this end, we have developed photoreactive benzophenone (BP)-containing PTH analogs which can be specifically and efficiently cross-linked to the human (h) PTH/PTHrP receptor. In this report, we describe the photocross-linking of a BP-containing PTH antagonist, [Nle8,18,D-2-Nal12,Lys13(e-BP),2-Nal23,Tyr34]bPTH(7-34)NH2 (ANT) to the recombinant hPTH/PTHrP receptor stably expressed in human embryonic kidney cells (HEK-293, clone C-21). This photoreactive antagonist has high affinity for the hPTH/PTHrP receptor and inhibits agonist-induced cyclase activity and intracellular calcium release. The photo-induced cross-linking of the radioiodinated antagonist (125I-ANT) to the recombinant hPTH/PTHrP receptor followed by SDS–PAGE analysis reveals a single radiolabeled band of ≈ 85 kDa, similar to that observed after cross-linking of a radioiodinated BP-containing agonist. The formation of this covalent 125I-ANT – hPTH/PTHrP receptor conjugate is competed dose-dependently by a variety of unlabelled PTH- and PTHrP-derived agonists and antagonists. This is the first report of a specific and efficient photocross-linking of a radioiodinated PTH antagonist to the hPTH/PTHrP receptor. Therefore, it provides the opportunity to study directly the nature of the bimolecular interaction of PTH antagonist with the hPTH/PTHrP receptor.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    6
    Citations
    NaN
    KQI
    []