CaMKII inhibition with KN93 attenuates endothelin and serotonin receptor-mediated vasoconstriction and prevents subarachnoid hemorrhage-induced deficits in sensorimotor function

2014 
Background: It has been suggested that transcriptional upregulation of cerebral artery contractile endothelin (ETB) and 5-hydroxytryptamine (5-HT1B) receptors play an important role in the development of late cerebral ischemia and increased vasoconstriction after subarachnoid hemorrhage (SAH). We tested the hypothesis that inhibition of calcium calmodulin-dependent protein kinase II (CaMKII) may reduce cerebral vasoconstriction mediated by endothelin and serotonin receptors and improve neurological outcome after experimental SAH. Methods: SAH was induced in adult rats by injection of 250 μL autologous blood into the basal cisterns. The CaMKII activity in cerebral vessels was studied by Western blot and immunohistochemistry. The vasomotor responses of middle cerebral and basilar arteries were measured in a sensitive myograph system. The functional outcome was examined by the rotating pole test 2 and 3 days after SAH. Results: SAH induced a rapid early increase in phosphorylated CaMKII protein at 1 h that was attenuated by cisternal administration of the CaMKII inhibitor KN93 (0.501 μg/kg) 45 min prior and immediately after SAH as evaluated by Western blot. Application of KN93 at 1 h and every 12 h post-SAH significantly reduced vascular CaMKII immunoreactivity at 72 h. In addition, contractile responses of cerebral arteries to endothelin-1 (ET-1) and 5-hydroxycarboxamide (5-CT) were increased at this time-point. KN93 treatment significantly attenuated the contraction induced by ET-1 and 5-CT. Importantly, treatment with the CaMKII inhibitor prevented SAH-induced deficits in neurological function, as evaluated by the rotating pole test, and similar sensorimotor scores were seen in sham-operated animals. Conclusions: The present study has shown that SAH is associated with increased contractile responses to ET-1 and 5-CT in cerebral arteries and enhanced early activation of CaMKII. Treatment with the CaMKII inhibitor KN93 attenuated the contractile responses and prevented impaired sensorimotor function after SAH.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    10
    Citations
    NaN
    KQI
    []