Proteomics of Huntington’s disease-affected human embryonic stem cells reveals an evolving pathology involving mitochondrial dysfunction and metabolic disturbances
2014
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the Huntingtin gene, where excessive (≥36) CAG repeats encode for glutamine expansion in the huntingtin protein. Research using mouse models and human pathological material has indicated dysfunctions in a myriad of systems, including mitochondrial and ubiquitin/proteasome complexes, cytoskeletal transport, signaling, and transcriptional regulation. Here, we examined the earliest biochemical and pathways involved in HD pathology. We conducted a proteomics study combined with immunocytochemical analysis of undifferentiated HD-affected and unaffected human embryonic stem cells (hESC). Analysis of 1883 identifications derived from membrane and cytosolic enriched fractions revealed mitochondria as the primary dysfunctional organ in HD-affected pluripotent cells in the absence of significant differences in huntingtin protein. Furthermore, on the basis of analysis of 645 proteins found in neurodifferentiated hES...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
55
References
36
Citations
NaN
KQI