Differentiation of Deprotonated Acyl, N- and O-Glucuronide Drug Metabolites by Using Tandem Mass Spectrometry Based on Gas-Phase Ion-Molecule Reactions Followed by Collision-Activated Dissociation

2019 
Glucuronidation, a common phase II biotransformation reaction, is one of the major in vitro and in vivo metabolism pathways of xenobiotics. In this process, glucuronic acid is conjugated to a drug or a drug metabolite via a carboxylic acid, a hydroxy, or an amino group to form acyl-, O-, and/or N-glucuronide metabolites, respectively. This process is traditionally thought to be a detoxification pathway. However, some acyl-glucuronides react with biomolecules in vivo, which may result in immune-mediated idiosyncratic drug toxicity (IDT). In order to avoid this, one may attempt in early drug discovery to modify the lead compounds in such a manner that they then have a lower probability of forming reactive acyl-glucuronide metabolites. Because most drugs or drug candidates bear multiple functionalities, e.g., hydroxy, amino, and carboxylic acid groups, glucuronidation can occur at any of those. However, differentiation of isomeric acyl-, N-, and O-glucuronide derivatives of drugs is challenging. In this stud...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    6
    Citations
    NaN
    KQI
    []