Extension of soil thermal conductivity models to frozen meats with low and high fat content

2005 
Thermal conductivity models offrozen soils were analyzed and compared with similar models developed for frozen foods. In total, eight thermal conductivity models and 54 model versions were tested against experimental data of 13 meat products in the temperature range from 0 to K40 8C. The model by deVries, with waterCice (wi) as the continuous phase, showed overall the best predictions. The use of wi leads generally to improved predictions in comparison to ice; water as the continuous phase is beneficial only to deVries model, mostly from K 1t oK20 8C; fat is advantageous only to meats with high fat content. The results of this work suggest that the more sophisticated way of estimating the thermal conductivity for a disperse phase in the deVries model might be more appropriate than the use of basic multi-phase models (geometric mean, parallel, and series). Overall, relatively small differences in predictions were observed between the best model versions by deVries, Levy, Mascheroni, Maxwell or Gori as applied to frozen meats with low content of fat. These differences could also be generated by uncertainty in meat composition, temperature dependence of thermal conductivity of ice, measurement errors, and limitation of predictive models. q 2005 Elsevier Ltd and IIR. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    25
    Citations
    NaN
    KQI
    []