The domineering non-autonomy of frizzled and van Gogh clones in the Drosophila wing is a consequence of a disruption in local signaling.

2000 
The frizzled (fz) gene is required for the development of distally pointing hairs on the Drosophila wing. It has been suggested that fz is needed for the propagation of a signal along the proximal distal axis of the wing. The directional domineering non-autonomy of fz clones could be a consequence of a failure in the propagation of this signal. We have tested this hypothesis in two ways. In one set of experiments we used the domineering non-autonomy of fz and VangGogh (Vang) clones to assess the direction of planar polarity signaling in the wing. prickle (pk) mutations alter wing hair polarity in a cell autonomous way, so pk cannot be altering a global polarity signal. However, we found that pk mutations altered the direction of the domineering non-autonomy of fz and Vang clones, arguing that this domineering non-autonomy is not due to an alteration in a global signal. In a second series of experiments we ablated cells in the pupal wing. We found that a lack of cells that could be propagating a long-range signal did not alter hair polarity. We suggest that fz and Vang clones result in altered levels of a locally acting signal and the domineering non-autonomy results from wild-type cells responding to this abnormal signal.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    87
    Citations
    NaN
    KQI
    []