Binding of SARS-CoV-2 spike protein to ACE2 is disabled by thiol-based drugs; evidence from in vitro SARS-CoV-2 infection studies.

2020 
Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the SARS-CoV-2 spike protein is an envelope glycoprotein that binds angiotensin converting enzyme 2 as an entry receptor. The capacity of enveloped viruses to infect host cells depends on a precise thiol/disulfide balance in their surface glycoprotein complexes. To determine if cystines in the SARS-CoV-2 spike protein maintain a native binding interface that can be disrupted by drugs that cleave cystines, we tested if thiol-based drugs have efficacy in receptor binding and cell infection assays. We found that thiol-based drugs, cysteamine and WR-1065 (the active metabolite of amifostine) in particular, decrease binding of SARS-CoV-2 spike protein to its receptor, decrease the entry efficiency of SARS-CoV-2 spike pseudotyped virus, and inhibit SARS-CoV-2 live virus infection. Our findings uncover a vulnerability of SARS-CoV-2 to thiol-based drugs and provide rationale to test thiol-based drugs, especially cysteamine and amifostine, as novel treatments for COVID-19. One Sentence SummaryThiol-based drugs decrease binding of SARS-CoV-2 spike protein to its receptor and inhibit SARS-CoV-2 cell entry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    8
    Citations
    NaN
    KQI
    []